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The relationship between activation energies and activation entropies in a series of related reac­
tions presents difficult problems of a statistical nature, particularly the task of estimating its 
slope - the so-called isokinetic temperature /3. In this paper the problem is formulated generally 
in the framework of the least squares method and solved explicitly for a special, but oftenly 
observed case when all the reactions have been followed at corresponding temperatures. In addi­
tion to the estimate of /3, the residual sums of squares are given enabling one to decide whether 
the isokinetic relationship is fulfilled or not ; finally the reliability interval of /3 is estimated\ 
In many practical examples /3 is estimated with a great uncertainty, hence its numerical value 
cannot be given any significance; the attention should be focused on the finding that the existence 
of an isokinetic relationship can be accepted as a hypothesis or that it can be disproved. 

The linear relation between activation parameters in a series of related reactions 
is called the isokinetic relationship or compensation law; it is offundamental import­
ance in kinetics and in reactivity studies l

-
4

. If it holds in a given series, the inter­
pretation of reactivity retains its validity even when the temperature is changed; 
if it does not hold, any interpretation in temperature independent terms, as inductive 
and mesomeric effects, strain of rings etc., is strictly speaking not allowed. The rela­
tionship can either connect the Arrhenius activation energy E* and the preexponential 
factor A (z a), or the activation enthalpy llH* and activation entropy IlS* (l b). 

Since there is no significant difference between the Arrhenius theory and the theory 
of the activated complex in the limits of common accuracy, we shall regard both 
formulations as equivalent. 

E* = eo + 2·303Rj3log A, llH* = ho + j3 IlS* . (la, b) 

The proportionality constant j3 is called the isokinetic temperature and represents 
the temperature at which all the reactions of the series proceed at the same rate l

-
4

; 

the intercepts eo and ho' are usually not attributed to any physical meaning. 

Preliminary communication: Nature 227, 366 (1970). 
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A similar relationship in thermodynamics (1 c), i.e. between the reaction enthalpy 
!1Ho and standard reaction entropy !1So, can be called the isoequilibrium relation­
ship4 but is usually included under the term isokinetic relationship, too. 

(1 c) 

In this paper we shall discriminate neither this equation and the quantities !1H and 
!1S without superscript will be used, relating either to kinetics or to thermodynamics 
as the case may be. Similarly the symbol k will denote either the rate or equilibrium 
constant. 

Equations (la - c), as simple as they are, impose serious problems of statistical nature when they 
shall be experimentally verified and the values of coefficients estimated. It is because the two 
variables involved are usually loaded with considerable experimental error and - what is still 
more important - always mutually dependent.* Particularly the simple plotting of /';.H against 
/';.S or the regression analysis in these coordinates are completely wrong procedures since the 
results obtained need not comply with the original kinetic data5 ,6 . We showed previously by a the­
oretical analysis and on numerous examples that particularly the slopes obtained are erroneous 
and that the accuracy of fit, expressed e.g. by the correlation coefficient is overestimated 5

. At 
the same time we suggested a simple and statistically correct procedure which consists in plotting 
the logarithms of rate constants at two temperatures** (T2 > T l ) against each other according 
to the equation 

.logk2 = a + blogk l , (2) 

From the graphically estimated slope b, the isokinetic temperature fJ is readily obtained 5,8 . 

(3) 

The whole procedure can be described in terms of geometry as a coordinate transformation 
(affinity); its essential feature is that the original line is drawn in independent coordinates. The 
method has been applied several times to kinetic data9 , 1O, however, it has the shortcoming that 
it is simply applicable to measurement at two temperatures only. In a more general case it is 
possible to construct an Arrhenius plot for each reaction of the series and to choose on it two 
smoothed values of log k at fixed temperatures l !, however, this procedure lacks simplicity. 
Alternatively part of the data remains simply not utilized, or the calculation was made for all 
available couples of temperatures 9. The last approach is unpractical , of course, and gives no correct 
possibility to choose the most probable value among a lot of results. Other procedures have been 
advanced, no one of whi"ch is completely correct from the statistical point of view. An indirect 
determination is possible if a kind of linear free energy relationship holds for the given reaction 
series 7 .9 .12. Then p can be calculated from the temperature dependence of the reaction constant 
(}, however, it makes the result dependent on the values of constants (J and on the accuracy of 
correlation. Another procedure12 is based on the multiple regression of the dependent variable 

The only exception arises with the equation (Ie) when /';.Ho has been directly determined 
by calorimetryl. 

The original denotation by indexes5 has been now interchanged in order to reach agree­
ment with other references1 ,7,8. 

Collection Czechoslov. Chern. 'Cornrnun, /Vol. 37/ (1972) 



Statistics of the Enthalpy-Entropy Relationship. I. 1427 

log kij and independent variables log k j t' Tj-
1 and Tj-

1 log k j 1 .This method has the short­
coming that an arbitrary temperature T t and corresponding values k 1 are given a special signific­
cance, thereby not weighing all measurements equally; in addition there is a principal defect that 
statistical estimates are used further to make new estimates. 

With respect to the general meaning of the isokinetic relationship, we have tried 
in this paper to solve the problem in a statistically unobjectionable manner. Although 
an absolute mathematic accuracy is not claimed, attention is paid rigorously to the 
fonnulation of the model considered, so that in practical examples a decision should 
be possible whether the assumptions apply. With this provision the results enable one 
to obtain the best estimates of the isokinetic temperature, of the intercepts in equa­
tions (la-c), and of the enthalpies and entropies under the isokinetic constraint; 
finally a decision is possible if the isokinetic hypothesis can be rejected on the basis 
of experiments or not. 

THEORETICAL 

The formulation of the problem is based on the most general representation of the 
isokinetic relationship in the coordinates log k vs T- 1 (Fig. 1). The significance 
of this picture was advocated particularly by Petersen6 and Malawski 13

, although 
it was known already to Schwab l4 and Gapon 15 with all its consequences. If the 
Arrhenius law holds for a given reaction, the corresponding points are situated 
on a straight line; if the isokinetic relationship holds, all the lines intersect in one point 
with the coordinates rr 1 and - eo/2' 303Rf3. 

Let us formulate the problem in the following way; its applicability to real systems 
will be discussed in the next section. In the coordinates x == T- 1 and y == log k 
a family of 1 straight lines is given (I ~ 3) with the slopes hj (i = 1,2, ... , I) and with 
a common point of intersection (xo, Yo). The ith line is determined by mj points 
(m j ~ 2) with coordinates (x jj , Y;j) wherej = 1,2, ... , mj' Instead of true coordinates 

"liT 

FIG. 1 

Representation of the Isokinetic Relationship in the Coordinates log k vs T-
1 
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1428 Exner: 

Y;j only the values Yij = Y;j + eij are available, where ejj are random variables 
with zero average values and a constant variance 0-

2
• The task is to estimate the 

parameters xo( = f3-1), Yo( = - eo/2'303Rf3), bi and 0-. In the framework of the least 
squares method the basic condition reads 

L: [Yij - Yo - b/x jj - xo)]2 = min. 
ij 

(4) 

The estimates xo, Yo and bi are then obtained by solving the set of normal equations 

y .. = Yo - Xo '[,mJjJl)n i + I,mJ7ixd'[,mi , 
j I i 

o = Yo L,m);j - Xo '[,mJ'jt - I,mjbiYi. + '[,m);txj. 
i i 

L,XijYu/mj = - xoYo + xoYi- + Yoxi. + [ji('[,x~)mj - 2xox j. + x~) , (5) 
j j 

where Xi, stands for '[,xij/m j, Yi. = L,Yij/mi and y .. = I, Yi)L:mi· 
j j ij i 

This system of I + 2 equations is non-linear and for this reason probably has not 
received attention in the treatises of the least squares method 16.* An explicit 
solution can be obtained easily in the special case whenxij = Xj and mi = m for all 
values of i; this means that all reactions of the series were kinetically followed at 
the same set of temperatures (nor necessarily equidistant, only the same fo~ all 
reactions). It is this special case to which this paper is confined, a more general case 
being reserved for a later pUblication17

. The problem can easily been formulated 
still more generally with variances aij changing from one point to another, i.e. with 
different weights attributed to individual points 1 7. 

To solve explicitly the special case outlined let us still introduce 

Pi = '[,xjYij/m - XYi' 
j 

(6) 

where x is the mean value of x. The searched estimate Xo is obtained, by solving the 
equations (5), in the form 

Xo = uo + X = Uo + '[,xj/m, 
j 

where Uo is a root of the quadratic equation 

(7) 

Quite "recently Thorn has derived essentially identical set of normal equations, when 
analysing the vapor pressure-temperature dependence18; he did not deal with its solution. 
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1 + - I(Xj - xY I(Pi - jj) (y;, - y .. ) = O. (8) 
m j i 

This equation has two real solutions except an unrealistic degenerate case, when the 
coefficient at u 2 equals zero. From the two real roots this one corresponds to the 
minimum sum 'of squares, i.e. to the searched value Xo = rr 1 which is computed 
with a positive sign at the square root [cf Eq. (12)]. When Uo is once found, Yo 
and bi are given by the equations 

Yo = y .. + (uom Ipi)![l I(x j - X)2] , (9) 
i j 

(10) 

Clearly bi is different from the slope bi ,o of the ith regression line computed without 
the constraint of a common point of intersection. It is given according to common 
formulae of linear regression19 as 

bi ,o = mpi!I(x j - xy . 
j 

Further the residual sum of squares So is given by the equation 

(11) 

So = I(Yij - y .. y - m2 [Ipf - Uo I(Pi - p) (y;' - Y .. )]!I(xj - x)Z (12) 
ij J 

and has f = (m - 1) I - 2 degrees of freedom; accordingly the corresponding 
standard deviation So can serve as an estimate of (J. In addition So may be compared 
to the sum of squares Soo computed from the free regression lines without the con­
straint of a common point of intersection. Soo is given by the usual formula of linear 
regression19, which reads in the symbols introduced 

(13) 

with f = (m - 2) 1 degrees of freedom. Of course So is always larger or at most 

equal to Soo since the relation holds: 

I(yi. - y .. )2 I(Pi - p)2 ~ [I(Pi - p) (y;' - y··)Y . 
iii 

, (14) 
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The equality represents the special case when all the unconstrained regression 
lines intersect in one point. It is of course identically fulfilled for l = 2 when there 
are only two lines. Usually So is distinctly larger than Soo. By comparing the corres­
ponding standard deviations So and Soo with an estimate of the experimental error 
D the following conclusions can be drawn. If Soo is not significantly larger than D, 
the Arrhenius equation is valid within experimental errors. (If it is significantly smaller, 
probably the experimental error has been overestimated). If So is not significantly 
larger than Soo, the hypothesis of a common point of intersection cannot be rejected. 
(A point of intersection at an infinite distance is included into the hypothesis). Quite 
rigorously the F-test must not be applied to So (so) since the problem is not linear. 
However, even a qualitative comparison of So, Soo, and (j may be sufficient in most 
instances; in such qualitative manner the F-test is referred to in later examples. 

In the past the value of p was determined erroneously as the slope in the graph I1H vs I1S 
(cf.2 -4.7). This procedure has been already criticized in the special case of measurement at two 
temperaturesS; now we can show generally that it yields wrong values of p. The relative enthalpy 
for each reaction is proportional to the negat ive slope b i , 0 of the corresponding line, see equation 
(J 1); the relative entropy is pi'oportional to the intercept of this line, i.e. to Yi' - xbi ,0' The re­
gression coefficient P* of these two variables is, accord ing to common regression formula 19, 

given by the equation: 

(/5) 

This expression is different from the right values p-1 = xo' given by equations (7) and (8). 
Both expressions give the same result only in the special (unrealistic) case when relation (/4) holds 
as the equality. In this case also b i equals b i ,0 for each line. 

Finally a confidence interval for uo(xo) can be constructed by the following pro­
cedure. Let us solve from the beginning a similar but easier problem in which the 
abscissa of the common point of intersection is known and denoted Xl = X + u. 
The task is to estimate its ordinate Yu and the slopes hi,u and to calculate the residual 
sum of squares Suo Similarly as in the more general problem we get for Yu and hi,u 

the equations identical with (9) and (10) with u instead of uo, and Su is given as 

ij (16) 

with.f = (m - 1) 1 - 1 degrees of freedom. 
By substituting Uo for u into (16) we get Su = So, of course; vice versa from the 

condition Su = So it follows u = Uo· 
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The calculation of Su can be repeated for various values of u and Su, or Su repre­
sented as a function of u. Generally it is a rational curve of the third degree with a ho­
rizontal asymptote given by the value Soo 

SCI:) = Llj - m LY~. - (1112/1) (LPiY/L(Xj - xy . (17) 
IJ 1 i 

Of course by taking the derivative of equation (16) with respect to u, the same value 
for the extremes is obtained as given by the equation (8). Hence the function has one 
maximum and one minimum given by the two roots of equation (8) and in addition 
three inflexions. A typical form is given in Fig. 2; a sharp maximum and fiat minimum 
are characteristic. If one now chooses a fixed value of Su as an admissible limit, one 
obtains the confidence interval of f3 from the graph. 

On the other hand the functional dependence of Yu on u is simply a straight line 
according to the equation (9); its slope boo is given by 

(18) 

The values of bOC) and Soo represent the solution of a further particular problem, i.e. 
to draw parallel lines through a given set of points; this problem corresponds to 
an isoenthalpic reaction series. 

A graph like Fig. 2 and the following ones, in real examples (Figs 3-6) represents the ultimate 
result of the analysis since it enables one not only to read off the most probable value of fJ, but 
also to visualize its confidence interval. It may happen, and in fact does quite often, that the iso­
kinetic hypothesis itself cannot be rejected while the isokinetic temperature fJ cannot be given 

any more definite value. 
Concluding the mathematical analysis we shall discuss several special degenerate cases. 

Since they cannot occur practically in real chemical examples, they will be mentioned only briefly 
and in this point the present analysis remains uncomplete. All the cases considered are characteri­

zed by the condition 

FIG. 2 

-4 

IcgK 

Dependence of the Residual Sum of Squares Su and the Corresponding Standard Deviation Su 

on the Supposed Isokinetic Temperature x- 1 (real example
24

) 
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LCPi - ji) (Yi. - y .. ) = 0 , (19) 

which reduces the quadratic equation (8) to a linear one with the only root u = O. At the same 
time the function Su = feu) in equation (16) is simplified and has only one extreme or it is even 
linear with no extreme. It depends on the value of the expression 

m LCPi - ji)2 - L(Xj - x)2 L(Yi. - y .. )2 ~ O. (20) 
i j j 

1. If this is negative, Su is an even function of u with a maximum at u = 0 and a horizontal 
asymptote, Uo as well as Yo lie at infinity, So equals S oo , and all bi equal boo- This is the represen­
tation of an isoenthalpic series. If still LPi equals zero, all the lines are horizontal with bi = b oo = 

i 

= 0, corresponding to the series with a zero enthalpy. 2. If the expression (20) is positive, Su is 
an even function of u with a minimum at u = 0 and a horizontal asymptote, So < S oo . Except 
the symmetry this case gives a normal picture. 3. If the expression (20) equals zero, Su is constant 
for all values of u and equals So as well as S oo' Any value of u complies with the equation (8) and 
no isokinetic temperature exists. All these cases are only of theoretical interest since in practice 
the critical expressions can ne~er be exactly equal to zero. 

Previously we suggested a simple methodS, limited to measurements at two temper­
atures, whereby one estimates f3 using the equations (2) and (3). The last task of the 
present analysis is to show that this procedure is, in its range of validity, essentially 
equivalent to that one developed here. The first step is to estimate the slope b of the 
regression equation (2) in the coordinates log kl == Yil and log k2 == Yi2 ' The 
common regression procedure is inadequate, although it has been applied9

, since 
both variables are equally loaded with errors. A suitable regression minimizes the 
squared deviations normal to the regression line l 6

, the slope b = tg ({J is given by the 
relation 

2b 2 L(Yil - Y'I)(Yi2 - Y' 2) 
tg2({J = _____ = ____ ~i ______ ~ ________ ___ 

1 - b
2 

L(Yil - Y' I)2 - L(Yi2 - Y'2)2 
(21) 

When solving this equation for b and introducing into (3) we get for f3 the equation 

where the symbol or, characterizing the broadness of the temperature interval, has 
been introduced: 
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(23) 
When we still denote 

(24) 

we get U o as a root of the quadratic equation 

u2[I(Yil - Y'I)2 - I(Yi2 - Y'2)2J + 4ur I(Yil - Y'I) (Yi2 - Y'2) -
iii 

- r2[I(Yil - Y'1)2 - I(Yi2 - Y'2)2J = 0, (25) 
i i 

which is also obtained from (8) when it is adapted for m = 2 and the symbol r is 
introduced. Hence both procedures are equivalent and the original one, suggested 
as a quick graphic methodS, has no more advantage when a numerical treatment is 
desirable. The equations (7)-(13), (16)-(18) can be recommended for the measure­
ments at two temperatures, too; only the practical computation is somewhat simpli­
fied as shown in the Appendix. 

APPLICATION 

In the preceding section a general mathematical model was presented and solved explicitly 
in a special case characterized by several assumptions. Before applying the formulae developed 
to real chemical problems, it is necessary to examine carefully to what extent these assumptions 

togk", ,;-'" ,//Y 
-: 

FIG. 3 

/ -,,/ 
"""et''' 

Test of the Isoequilibrium Relationship 
in the Reaction24 of l,l-Dinitro Com­
pounds with Formaldehyde 

Plot of log Kso against log K IO ; 0 

well-behaved derivatives, • other deriva­
tives of the XCH2 CH(N02h type, 
q) remaining derivatives. 
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FIG. 4 

Isoequilibrium Relationship for the Reaction of 
l,l-Dinitro Compounds with FormaJdehyde24 

Full line for 9 selected derivatives, broken line 
for 14 derivatives of the XCH2CH(N02h type, 
further explanation see text. 



1434 Exner: 

are fulfilled. 1. The fundamental presumption is the validity of the Arrhenius law, at least within 
the interval of experimental temperatures and with a reasonable accuracy, comparable with the 
experimental error. This assumption is tested using the value of Soo; if the test is negative, no 
further conclusions can be drawn. In organic chemistry the Arrhenius law is valid in a larger 
majority of examples, due mainly to narrow intervals of temperature. Even when more complex 
equations are used in the literature, the simple Arrhenius treatment may give satisfactory results 
(Example 3) . When a non-linear equation is necessary, statistics of the isokinetic relationship 
becomes very difficult and is not elaborated as yet; for some remarks in this direction see! . 
2. In developing the formulae, temperature was not considered as a random variable but as an 
exact quantity. Apart from the usually small errors in temperature measurement, this assumption 
can be generally substantiated by the following approach. Let us denote by T the exact value 
at which one intended to carry out the kinetic measurement; experimental errors in thermostating 
are simply manifested as errors in log k. In this conception one is justified in introducing T in all 
regression formulae as if it would be free of error20. 3. If the isokinetic relationship holds, the 
quantities ejj are identified with experimental errors in log k and their standard deviation (J 

with the standard error J . The method of least squares is fully justified when the distribution 
of eij is normal, however, its application is not limited to this case. In kinetic measurements 
it is usually assumed that the distribution of log k rather than of k is normal 21. 22 . The model 
considered by us supposes further that the absolute error in log k is constant at different temper­
atures and in all the reactions of the series. This assumption correspond ing to the constant relative 
error in k is quite naturaI21 •22 ; however, the alternative procedure was also advocated23 giving 
each rate constant a particular weight according to the accuracy of the corresponding kinetic 
experiments. In our opinion it can be dangerous to give different weights to individual reactions 
of a series since they are a priori of the same importance. At any rate the different accuracies 
should be proved rigorously by statistical tests before such decision is made, and the experimenter 
must always try rather to bring all measurements to the same level. Alternatively, the reactions 
can be divided into subgroups etc. Variable accuracy according to temperature may be encounte­
red more frequently and does not represent such a shortcoming. It also can be incorporated easily 
into our ' mathematical model by simple multiplying by appropriate weights. 4. The set of experi­
mental data must be complete, i.e. each , reaction followed at all temperatures. In practice one 

P"~ 

~-,.;_- I \ 
o~---' --~--~~--~--~ 

FIG. 5 

Isokinetic Relationship for the Reaction of 
Malachite Green Derivatives with Hydroxyl 
lons25 (5 derivatives) 

- --", 

L-__ -k-_______ -+ ____ -;;;:;;;:;:--~-----'25 

FIG,6 

Isoequilibrium Relationship of pK Values of 
3- and 4-Substituted (4'-Methoxybenzal)­
anilines in Acetonitrile26 (6 derivatives) 
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lacking figure from a set of, say, twenty may be completed by interpolation or extrapolation, 
without affecting the overall results. Otherwise it is necessary to have recourse to the general 
method l 7. 5. Some directions for practical calculations on a desk calculator are suggested in the 
Appendix. In fact the explicit solution is of value only in connection with this technique. 
If a computer should be used, the derived formulae have no advantage and the general 
programl7 may be applied to all cases. 

The following examples show the standard treatment of a reaction series and some typical 
results which may be obtained . 

Example 1. Equilibrium constants of the reaction of twenty substituted dinitromethanes with 
formaldehyde were determinedz4 at 10, 20, 35 and 50°C. The isokinetic relationship was stated 
to be valid for eleven derivatives and the value of p = 690 ± 90 K was found by our methodS 
using the data ilt 10 and 50°C and the improper common regression. From the plot of log kso 
against log k 10 (Fig. 3) we found a rather exact isokinetic relationship for the group of nine 
derivatives only (No 5 ~ 10, 12, 14, 15) and an approximate one, but covering a broader range 
of K values, for fourteen derivatives of the type RCH 2 CH(NOzh (in addition No 2~4, 17, 18). 
Calculations were carried out for the two sets separately and gave p = 491 K , Yo = 5·225 log 
units, So = 0·031, soo = 0·035, s ro = 0·085 log units, for the former, and p = I 879K, Yo = 4·171 
log units, So = 0·061, soo = 0·032, Sro = 0·126 log units for the latter; Su as function of u (or T- l ) 
is shown in Fig. 4 with a full line for the former group and with a broken line for the latter. 
The values of soo indicate that the experimental error, given Z4 from 0·01 to 0·02 log units, may 
be somewhat underestimated. In the narrower set the isokinetic hypothesis must be accepted 
unconditionally (so < soo); however, the confidence interval of P is at least from 425 to 700 K 
(for (5 = 0·04 log units). Tn the broader set the isokinetic hypothesis can be rejected even at the 
confidence level ex = 0·005, any reliable value for p cannot be given. The isoenthalpic hypothesis 

is to be rejected in both sets (s ro) . 

This example shows a complete treatment of a given reaction series which may consist of the 
following steps: the Arrhenius plot (Fig. 4), a preliminary plot of two log k against each otherS 
(Fig. 3), the statistical treatment concluded by the graph of Su (Fig. 4) and by calculation of I:lH, 
I:lS, and isokinetic I:lH, I:lS (see Discussion). A conventionall:lH vs I:lS plot (Fig. 9) is not necessa­
ry; it can only serve to demonstrate the weakness of this treatments. The following examples are 

treated less thoroughly. 

0·3 

FIG. 7 

~-----r-----r-----r--,,-r--'~ 
klgO 

Isokinetic Relationship for the Lossen Rearrangement of Salts of Dihydroxamic Acids
27 

Broken line for all 23 derivatives, full line one deviating derivative omitted. 
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Example 2. Kinetics of the reaction of Malachite Green like dyestuffs with hydroxyl ions25 

is one of the best proven examples of the isokinetic relationship, however, if it is confined to five 
meta- and para-substituted derivatives which were followed kinetically at 10, 15, 20, 25, 30, 35, 
40, 55, 65 and 75°C. In this well-behaved case even the simple plot of log k against T - 1 gave 
a reasonable estimate25 fJ = 331 ± 4 K. Our calculations yielded fJ = 335 K, Yo = 1·460 log 
units, So = 0,011, soo = 0·009 and Soo = 0·066 log units, the dependence of Su on the supposed 
isokinetic temperature is shown in Fig. 5. The experimental accuracy was estimated to be from 
2% (0·009 log units in log k) up to 6% (0'025 log units). It follows that the hypotheses of the vali­
dity of the Arrhenius equation (soo) as well as of the isokinetic equation (so) must be accepted, 
the latter with the values of fJ, say, 325-350 K (corresponding to accuracy of 5% in k) . The hypo­
theses can be surely rejected that the reaction series is isoenthalpic (s oo) or isoentropic (su = 0·061). 
However, the test of significance of the difference So- Soo against Soo is positive even at IX = 0·005. 
The result should thus be formulated that the isokinetic relationship is acceptable with respect 
to the experimental accuracy and to the accuracy of the Arrhenius law; however, releasing of the 
isokinetic constraint produces still a significant improvement. The relatively definite conclusions 
in this example were made possible first of all by the unusually broad temperature interval. 

Example 3. The pKu values of six 3- and 4-substituted (4'-methoxybenzal)- anilines were 
measured26 in acetonitrile at the temperatures 15, 25, 35 and 50°C. By our method5 , but improper­
ly with the common regression, the values of fJ = 12 or 183 K were found, according to whether 
the couples of temperatures 15 and 50 or 25 and 35°C were used26 . Our recalculation yielded 
fJ = 91 K, Yo = 22·14 pK units, So = 0,034, soo = 0,023, Soo = 0·036 pK units, and Su shown 
in Fig. 6. The "experimental accuracy" was estimated26 to 0·03 pK units, hence the Arrhenius 
law and even the isokinetic relationship can be accepted. The good fit with the Arrhenius law 
makes a more elaborate treatment26 unnecessary. The hypothesis of an isoentropic reaction 
series can be rejected (su = 0·060), but the isoenthalpic series must be admitted (s (0)' Here again -
like in Example 2 ..:...- the ratio of So and soo is insignificant at IX = 0,05, but the difference So - Soo 

is significant at IX = 0·01. The isokinetic temperature can hardly be given any more distinct value, 
if, say, the standard deviation 0·05 pK units is admitted, the confidence interval of fJ is from 
-75 to + 155 K. In fact the reaction series would be isoenthalpic, were it not for the first reaction 
from the top in Fig. 6, which causes that fJ is lower than the experimental temperature. 

Example 4. The Lossen rearrangement of salts of dihydroxamic acid was followed only at two 
temperatures, 30 and 40°C, on 24 compounds27

. (For several compounds log k at 40°C was 
obtained5 by extrapolation from log k at 20°C). The data were already treated5 by the graphical 
method and an approximate values of fJ = - 4664 K found, when one badly deviating point 
(No 4) was eliminated. Leffler on the basis of an unsufficient statistical treatment offered the me­
aning that no isokinetic relationship exists4 . The calculations have now been performed exploit­
ing some simplifications shown in the Appendix for m = 2. The values of fJ = 714 K, Yo = 8·14 
log units, So = 0,048, Soo = 0·053 log units and Su shown in Fig. 7, (broken line), change drama­
tically when the deviating point is omitted, i.e. to fJ = -581 K, Yo = 26·48 log units, So = 0,016, 
Soo = 0·017 log units, Su as shown by the full line. The improvement is highly significant (IX ~ 

~ 0·05) so that the elimination of the deviating compound (dotted straight line) was justified. 
The experimental accuracy was given from 0·004 to 0·016 log units for individual compounds27

, 

the. upper limit being probably more realistic. Hence the isokinetic hypothesis cannot be rejected, 
however, the isokinetic temperature cannot be given any definite value, any value higher than 
600 K and any negative one being admissible. This example shows clearly the weakness of all 
conclusions based on insufficient number of measurements in a narrow temperature range, the 
larger number of reactions investigated being of little use. 
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DISCUSSION 

The improved statistical procedure enabled us to reinvestigate a lot of reaction 
series and to draw more definite conclusions than formerly as to the occurrence, 
usual accuracy and significance of the isokinetic relationship, further as to the mean­
ing and possible values of the isokinetic temperature [3. The isokinetic temperature [3. 
The existence of this temperature, connected with the reversal of reactivity, is a puz­
zling corollary of the isokinetic relationship 14,1 s. Especially if the reactivity in a re­
action series is interpreted in theoretically significant terms, as inductive and meso­
meric effect, steric strain etc., it is hard to believe that those effects could change 
their sign with temperature. The question thus becomes important whether the iso­
kinetic temperature may be in principle experimentally accessible or not. With our 
simple graphical reexamination we were able to shows that all values within the 
experimental interval , claimed in the literature2,4,7 , are artefacts due to an erroneous 
statistical treatment. We offered the meaning that the constant [3 mostly results 
from a linear extrapolation of a non-linear dependence of log k on T- 1 and that it 
lacks any immediate physical meaningS,ll. This view was supported by the existence 
of negative isokinetic temperatures5 ,28 and recently by a theoretical approach 
of Likhtenshtein29 who represented [3 as a non-linear function of the experimental 
temperature. Petersen6 believed that no isokinetic temperature lying in the experimen­
tal interval had been reported. However, its existence in Fig. 5 can hardly be doubted 
although only in the limited series ofreactions2s ; other examples, even when restricted 
to small subgroups3o, have also been reported, particularly in the heter'ogeneous 
catalysis31 . It must probably be accepted that a reversal of reactivity with temper­
ature is principally possible even when rare. In these series the mechanism is certainly 
complicated and any straightforward interpretation · in terms of substituent effects 
not allowed. The second question concerning the isokinetic temperature is whether 
it can attain arbitrary values differing from one reaction series to the other, or whether 
there is one, or several characteristic values of ge.leral validity. The second meaning 
was advocated by several theoretical arguments3,32,33 and by observations34 ,3s 
based on incorrect statistical treatment. However, considering the evidence now 
available, we can assert that these theories are experimentally disproved. Positive, 
negative, high and low values of [3 are possible, although positive ones, higher than 
the experimental temperature, seem to be the most frequent. The reported values34 ,3s 
centered round an average, close to the experimental temperature, are with certainty 
artefacts of the computational procedure. It is true that the value of [3 is determined 
only very approximately by any procedure. However, considering the lack of its 
physical meaning, its exact determination is not the main task of the mathematical 
analysis of the isokinetic relationship. 

Classification of reaction series. Blackadder and Hinshelwood36 distinguished 
three types of reaction series: a) with a constant entropy of activation i.e. enthalpy 
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controlled (/3 = 00 ), b) with a constant enthalpy of activation. i.e. entropy controlled 
(/3 = 0), and c) with compensation. The last term means that enthalpy and entropy 
changed in the same sense and the resulting effect on the rate constant is not so large 
as if it would be controlled by either I1H or I1S alone; the value of f3 is positive, either 
higher or lower than experimental temperatures or even within the experimental 
interval. After introducing better statistical methods we were able to detect the 
fourth typeS, a reverse of compensation, when I1H and !),S are changed in opposite 
sense and f3 is negative. 

From the schematic picture in Fig. 8 it is evident that there is in fact very little 
difference between an isoenthalpic and isoentropic reaction series; in many cases the 
values of /3 = ° and /3 = 00 cannot even be distinguished in the limits of the attained 
accuracy8.1 o. Neither high positive and negative values of /3 can be discriminated. 
Hence we suggestedS,ll as the only meaningful classification to divide the reaction 
series into those with decreasing selectivity, i.e. with increasing temperature the 
reaction rates approach one another (/3 > Texp also /3 < 0, Fig. 8b,c), and those with 
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Schematic Representation of the Isokinetic Relationship 
a In an isoenthalpic series, b in an isoentropic series, c with the compensation p > Texp , 

d with the compensation p < Texp. 
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increasing selectivity ({J < Texp , Fig. 8d). The isoenthalpic series represents the bor­
derline ({J = 0, Fig. 8a). The first case may be seen as a rule and agrees with the com­
mon sense; accordingly an extremely reactive reagent would react with all substrates 
at the same rate. The second case is an exceptionS (Fig. 6) and each such series should 
be studied carefully in order to detect the actual meaning of this classification. The 
possibility is given that this abnormal behaviour is caused by a complex reaction 
mechanism. 

Meaning of the activation parameters . As we showed previouslyl!, the activation 
free energy (logarithm of the rate constant) at a chosen temperature affords a more 
reliable basis for any structure discussion than the activation energy. If the isokinetic 
relationship holds for a reaction series, the activation parameters yield in fact no 
additional information since all the quantities t1G, t1H and t1S change in a parallel 
manner. When an attempt is made to discuss t1H and t1S separately in their structure 
dependence, it may happen that it is the experimental errors which are in fact dis­
cussed. To avoid this possibility we suggest defining the isokinetic enthalpies 
t1Hiso and isokinetic entropies t1Siso as values computed with the isokinetic constraint. 
E.g. the values of t1Siso are obtained directly from bi in equation (10) trough the 

relation 
(26) 

In the expression for t1H?so the term - RT drops out. The values of t1Siso are ob­
tained from t1Hiso and t1G. The relation of isokinetic and unconstrained activation 
parameters is visualized in Fig. 9. The computed 24 values of t1Ho and t1So are shown 
for the same reaction as in Figs 3 and 4 together with their estimated errors24

. Since 
the errors in t1Ho and t1So are dependent, each point can move only in one direction 
shown by a given line, the slope of which equals the mean experimental temperature 
(error slope4 ,34 ,36). The point of intersection of this given line (prolonged if necessary) 

FIG. 9 

Isokinetic (0 ) and Unconstrained (e) Reaction 
Enthalpies (kcal) and Entropies, (cal a - !) (Experi­
mental data24 the same as in Figs 3 and 4) 
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with the isokinetic line determines ~H?so and ~S?so' The values may differ distinctly 
from the uncostra~nedh ~Ho and ~So although the differences only seldom exceed ~.!., 
the standard error ill t e example gIven. ~ 

If the reaction series is isoenthalpic, the isoenthalpic enthalpy and entropies may a 
be defined as a special case of isokinetic values. The isoenthalpic enthalpy is of course

1 I 
constant for all reactions of the series and is connected with boo from the equation t 
(18). On the other hand, when the reaction series is isoentropic, the isoentropic i 
enthalpies and entropy may be defined. The former ones are obtained from bu given ' J 
by equation (10) with u = - I,x)m, the latter is constant and equals 2·303R(yo ~. ~ 

j ~ 
- log T - 10'75) in kinetics and 2·303Ryo in thermodynamics. ~ 

We conclude that the isokinetic (isoenthalpic, isoentropic) activation parameters i 
are more reliable than the common values in all cases when the isokinetic relationship' ~ 
has been proven to hold (as in Example 1, the narrower set). When it cannot~t,~:: ~ 
disproved but yet would cause a reduction of the over-all accuracy (Examples 2,3j . ~ 
we recommend the calculation of both the isokinetic and common parameters. The 1 
main problem remains concerning how to judge reaction series, where the isokinetic I 
relationship is valid only roughly or not at all ; i.e. whether ~G or ~H is the appro- ,I 
priate quantity for structure-reactivity correlations. An experimental solution is ~ 
in principle possible by comparing ~G and ~H of two related reaction series 11

,37, 'j:.;.'.' 

however, it would require much more experimental material than available at present. ' 

Meaning of the isokinetic relationship. The mathematical treatment enables one 
to estimate the isokinetic temperature f3 on the one hand and to judge the validity ,1. 

and accuracy of the isokinetic relationship on the other hand. We have seen that the 1 
numerical value of f3 is in general of little use; in most cases it is enough to decide ~ 

whether it is higher or lower than the experimental temperature. Hence the second ~ 
result is by far more important. In statistical terms it may be formulated either that ~ 

the isokinetic hypothesis is rejected on a certain significance level, or, that there are , 
not sufficient grounds to reject it. The weight of the decision will depend on several i 
factors such as the experimental accuracy, the number of reactions in the series, ~ 

~ 
the number of measurements for one reaction, and the broadness of the temperatur(~ ~ 

interval. Particularly if this interval is narrow, the isokinetic hypothesis cannot be I 
rejected in any case and a broad range of f3 values must be admitted, including , 
those for the isoenthalpic and isoentropic series (see Example 4). The insufficient : 

te~~e~~:~~g::~:ei::~:::i:ea~~t::i:_~::k~~e:i:rS::~e:ui7 ~~r ::r r::i~~::' one of the I' 

primary tasks of structural chemistry, since the interpretation of reactivity should 
be different in both. The isokinetic relationship could thus help to define with more 
precision the term reaction series in a proper sense38 ; its validity should be a necessary, f. 
but not a sufficient condition for a set of reaction to form a "series". A lot of attempts t 
has been made to derive the isokinetic relationship in terms of various theories 1- 3; 
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they have a common shortcoming of being either quite general or confined only to 
reactions in the condensed phase, and offer no possibility to distinguish isokinetic 
and non-isokinetic series. There is the task of the future theory to incorporate the 
.erm "reaction series" and to enable prediction in which systems it is realized. 

APPENDIX 

For practical calculation on the desk calculator the following procedure is recommended: The 
U f ".V independent variable u is introduced first 

(7') 

ependent variable being Y = log k. The auxiliary quantity Pi is defined on the basis of Eq. (6), 

(6') 

Further auxiliary symbols X, Y, Z, P, Q, U are defined as follows 

~ 2 1~ ~ 2 1 ~ 2 
Y = m LCYi. - y .. ) = - L (LYij) - - 1(LYij) , 

i Tn i j m ij 

~ 2 ~2 1 ~ 2 
Z = L)Yij - y .. ) = L..Yij - ,(LYij) , 

jj ij m ij 

(27) 

In practical calculation the right-handed sides of equations (27) are used. The quantities needed 

are then given by the relations 

U
o 

= rr 1 - ~ Irl = {Q - p2/ml - XY - J[(Q - p2/ml - Xy)2 + XU21}/U 
m j J 

(8') 

Yo = ~(IYij + uop/X) , (9') 
ml ij 
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(10') 

So = Z - {Q + p2/ml + Xy + J[(Q - p2/ml_ Xy)2 + XV21}/2X, (12') 

/ = (m- 1)/ - 2 

Soo = Z- Y- Q/X, / = (m- 2)1 (13') 

Su = Z - [Q - uV + u2(y + p2/mIX )1/(X + u2) / = (m - 1) 1- 1. (16') 

From bi the isokinetic enthalpies are obtained according to the equation (23). 
The procedure is considerably simplified when there are only two experimental temperatures 

(T2 > T1), the dependent variables being denoted Yi1 = log ki1 and Yi2 = log k i2 . Here the 
number of auxiliary symbols is restricted by the constraint SOD = O. Let us introduce, 
according to the equation (21) and the following symbols ., 

"2 1" 2 
L = L.,Yi1 - -I (L.,Yi1) , 

1 1 

The searched quantities are then given by the equations 

b _ '(Yil - Yi2) + uo(2yo - ~i1 - Yi2) 

i - 2,2 + 2U6 

L + N ,2M _ U7:(N - L) - I?M 
Su = -2- + - - --,2+7- --· 

LIST OF SYMBOLS 

A preexponential factor 
b proportionality constant in Eq. (2) 

/ = 1- 2 , 

/ = / - 1 

bi bi ,0 biU boo slopes of the Arrhenius lines (isokinetic, unconstrained, constrained) 

(28) 

(8") 

(9") 

(10") 

(12") 

(16") 
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eij 

eo 
E* 

f 
ho 
liH 
liH o 

liH* 
liHiso 

j 

k 

Pi 
PQ 

random variable (error) 
intercept in Eq. (la) 
Arrhenius activation energy 
degrees of freedom 
intercept in Eq. (lb) or (Ie) 

activation or reaction enthalpy 
reaction enthalpy 
activation enthalpy 
isokinetic (activation or reaction) enthalpy 
subscript denoting the straight line (reaction) 
subscript denoting the point (temperature) 
symbol for rate or equilibrium constant 
number of straight lines (j.e. reactions) 
number of points on a line (j.e. temperatures) 
auxiliary symbols defined by Eqs (28) 
function of variables defined by Eq. (6) 
auxiliary symbols defined by Eqs (27) 

So soo Su Soo standard deviations (isokinetic, unconstrained, constrained) 
So Soo Su Soo residual sums of squares (isokinetic, unconstrained, constrained) 
liS symbol for activation or reaction entropy 
liSo reaction entropy 
liS* activation entropy 
liSiso isokinetic (activation or reaction) entropy 
u Uo independent variable introduced by Eq. (7) 
U X Y Z auxiliary symbols defined by Eqs (27) 
xij:j independent variable ( = T - !) 
Xi. x mean values of x 
Xo abscissa of the point of intersection ( = p-l) 

Yij Yi! Yi2 dependent variable (= log k) 

Yi. y .. y.! Y' 2 mean values of y 
Yo Yu ordinate of the point of intersection 

confidence level 
p P* isokinetic temperature (real and erroneous) 
t5 experimental error 
17

2 variance of eij 

broadness of the temperature interval, defined by Eq. (23) 
rp inclination of the special regression line, Eq. (21) 
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